
Keysight AI Plugin 
Generation

Team Members:
Shaunveer Gill
Ahmad Joseph
Huy Nguyen
Philip Xie
Madeline Miller

Sponsors and Stakeholders:
Maxim Pletner (Mentor)
Alan Copeland (Mentor)
Brennen DiRenzo (Mentor)
Jeff Dralla (Director)
Ivan Diep (Mentor)

Keysight AI Plugin 
Generation



Who is Keysight?

● The leading manufacturer of electronics 

testing and measurement equipment

● Provides software and hardware to 

perform measurements and tests



Terminology

● OpenTAP - Keysight’s open source test automation project; automated testing for devices

● Plugin - Software used to communicate between OpenTAP & the instrument being tested. 

● LLM - Large Language Model; AI that can recognize/generate text; e.g. ChatGPT

● RAG Approach - Retrieval Augmented Generation; uses external data sources to provide 

context that the LLM uses to base its answer on



Current State Of Plugin Generation

● To be able to code a plugin, you need to parse lots of documentation for devices and have a 

solid understanding of hardware

● Test Engineers lack software experience

● Requires experience with developing plugins and the OpenTAP Software Development Kit 

● Time saved creating plugins can be spent testing 





Example of Power Supply & OpenTAP



Example Plugin

Check for OpenTAP syntax

Inherit from the OpenTAP 
Instrument class

Controlling the instrument, such 
as turning off the display



Demo



Project Goals

● Reduce development time for OpenTAP plugins

● Automate testing of generated plugins to ensure minimum 

quality standards are met 



Architecture



1st LLM generates plugin and 2nd LLM verifies plugin



Challenges

● Prompt Engineering: Creating LLM prompts to return quality plugin was incredibly difficult

● Gathering Data: Relevant instrument documentation related to Python was hard to come by

● Automated testing: A wide range of tests & use case scenarios needed to be accounted for

● Updating Technologies: We had to switch to updated versions of technologies many times 



Results

● Plugin Generation: Successfully generates plugins for a wide range of 
Keysight tools and decreased development time from ~48 hours to 
8-10 hours, decreasing development time by at least 75%, 

● Streamlined Verification: Plugins are verified before they are sent back to 
the user, ensuring only quality plugins are returned (e.g. can compile and can 
connect to an instrument)

● Compatibility Assurance: Plugins produced can be used directly with various 
Keysight softwares without any additional modifications



Next Steps

● Expanding C# Plugin Support: Plan to add support for generating plugins in C# 

to broaden our capabilities.

● Fine-Tuning Prompts: Aim to further refine the prompts used with the LLMs to 

enhance accuracy and consistency.

● Enhancing Database Resources: Expand the LLMs' accessible database with 

more extensive documentation to improve the quality of the generated plugins.



Acknowledgements

Thank you to our Keysight sponsors!

Maxim Pletner

Alan Copeland

Ivan Diep

Brennen Direnzo

Jeff Dralla



Thank You
Any Questions?



Single Production



Batch Production



Technology Architecture



Technologies Used

Python PyQt5 
Frontend

IMPORTANT

OpenAI’s GPT-4
Flask - Runs a server 

that makes calls to Azure 
AI Search and LLM



Technologies Used (continued)

LangChain - Chunks 
the PDFs, uploads 

them to AI Search’s 
database 

Azure AI Search -
Queries the database 
based on keywords 
found in user’s input


