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Who is Keysight?

● The leading manufacturer of electronics 

testing and measurement equipment

● Provides software and hardware to 

perform measurements and tests



Terminology

● OpenTAP - Keysight’s open source test automation project; automated testing for devices

● Plugin - Software used to communicate between OpenTAP & the instrument being tested. 

● LLM - Large Language Model; AI that can recognize/generate text; e.g. ChatGPT

● RAG Approach - Retrieval Augmented Generation; uses external data sources to provide 

context that the LLM uses to base its answer on



Current State Of Plugin Generation

● To be able to code a plugin, you need to parse lots of documentation for devices and have a 

solid understanding of hardware

● Test Engineers lack software experience

● Requires experience with developing plugins and the OpenTAP Software Development Kit 

● Time saved creating plugins can be spent testing 





Example of Power Supply & OpenTAP



Example Plugin

Check for OpenTAP syntax

Inherit from the OpenTAP 
Instrument class

Controlling the instrument, such 
as turning off the display



Demo



Project Goals

● Reduce development time for OpenTAP plugins

● Automate testing of generated plugins to ensure minimum 

quality standards are met 



Architecture



1st LLM generates plugin and 2nd LLM verifies plugin



Challenges

● Prompt Engineering: Creating LLM prompts to return quality plugin was incredibly difficult

● Gathering Data: Relevant instrument documentation related to Python was hard to come by

● Automated testing: A wide range of tests & use case scenarios needed to be accounted for

● Updating Technologies: We had to switch to updated versions of technologies many times 



Results

● Plugin Generation: Successfully generates plugins for a wide range of 
Keysight tools and decreased development time from ~48 hours to 
8-10 hours, decreasing development time by at least 75%, 

● Streamlined Verification: Plugins are verified before they are sent back to 
the user, ensuring only quality plugins are returned (e.g. can compile and can 
connect to an instrument)

● Compatibility Assurance: Plugins produced can be used directly with various 
Keysight softwares without any additional modifications



Next Steps

● Expanding C# Plugin Support: Plan to add support for generating plugins in C# 

to broaden our capabilities.

● Fine-Tuning Prompts: Aim to further refine the prompts used with the LLMs to 

enhance accuracy and consistency.

● Enhancing Database Resources: Expand the LLMs' accessible database with 

more extensive documentation to improve the quality of the generated plugins.
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Thank You
Any Questions?



Single Production



Batch Production



Technology Architecture



Technologies Used

Python PyQt5 
Frontend

IMPORTANT

OpenAI’s GPT-4
Flask - Runs a server 

that makes calls to Azure 
AI Search and LLM



Technologies Used (continued)

LangChain - Chunks 
the PDFs, uploads 

them to AI Search’s 
database 

Azure AI Search -
Queries the database 
based on keywords 
found in user’s input


